Dynamic Response of Levees

Scott J. Brandenberg, UCLA
November 16, 2018
Collaborators

Jonathan Stewart
Anne Lemnitzer
Robb Moss
Samuel Yniesta
Dong Youp Kwak

Riccardo Cappa
Yi Tyan Tsai
Paolo Zimmaro
Ali Shafiee

Ted Reinert
The Delta

Photo courtesy of Roy Tennant.

http://sanjoaquinbasin.com/images/joaquin_dec.png

http://pubs.usgs.gov/fs/2010/3032/images/map01.png
Land Subsidence

DRMS (2008)
Testing of Sherman Island Peat
How Soft is the Peat?
Cyclic Simple Shear Laboratory Testing Device

Vertical Stress

Force

Disp

Strain = Disp/Height
Stress = Force/Area

Height

Soil Sample

Shafiee et al. (2015)
Peat Settlement Potential

(a)

\[r_u \]

- \(\gamma_{cyc} = 1\% \)
- \(\gamma_{cyc} = 3\% \)
- \(\gamma_{cyc} = 10\% \)

(b)

\[\varepsilon_v (\%) \]

- \(\gamma_{cyc} (\%) \)
- \(\varepsilon_v (\%) \)
- \(t \) (min)

(c)

\[\varepsilon_v (\%) \]

- \(\gamma_{cyc} (\%) \)

Shafiee et al. (2015)
iConsol.js Computer Code

- iConsol.js is an nonlinear consolidation code publicly accessible online at www.uclageo.com/Consolidation/ and described by Brandenberg (2017).
- “Uniform” layer of soil has constant compressibility and permeability constitutive relationship.
Test Location

Vibration Level
1 Acceptable for modern buildings
2 Acceptable for historic buildings
3 Acceptable for fragile structures
4 Car driving over levee crest
5 Barely perceptible
6 Ambient vibrations during quiet time

Reinert et al. (2014)
MK-15 Mobile Field Shaker

Reinert et al. (2014)
Sample Data

Reinert et al. (2014)
Sample Data

\[r_{ur} = \frac{\Delta u}{\sigma_{vo}} \]

Reinert et al. (2014)
Levee Centrifuge Models

Clay Levee Model (Non-Liquefiable)

Sand Levee Model (Liquefiable)

Cappa et al. (2017)
Shaking Sandy Levee
Fragility Functions

Table 1. Damage levels assigned to levee segments

<table>
<thead>
<tr>
<th>Damage Level</th>
<th>Crack depth (cm)</th>
<th>Crack width (cm)</th>
<th>Subsidence (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No damage reported</td>
</tr>
<tr>
<td>1</td>
<td>0~100</td>
<td>0~10</td>
<td>0~10</td>
<td>Slight damage, small cracks</td>
</tr>
<tr>
<td>2</td>
<td>100~200</td>
<td>10~50</td>
<td>10~30</td>
<td>Moderate damage, cracks or small lateral spreading</td>
</tr>
<tr>
<td>3</td>
<td>200~300</td>
<td>50~100</td>
<td>30~100</td>
<td>Severe damage, lateral spreading</td>
</tr>
<tr>
<td>4</td>
<td>> 300</td>
<td>> 100</td>
<td>> 100</td>
<td>Levee collapse</td>
</tr>
</tbody>
</table>

Kwak et al. (2016a)
Fragility Functions

Kwak et al. (2016a)
System Analysis

For segment i: $\exp(\mu_{inc}) = 108$ cm/s, $\sigma_{inc} = 0.89$

For segment j: $\exp(\mu_{inc}) = 84$ cm/s, $\sigma_{inc} = 0.80$

Kwak et al. (2016b), Zimmaro et al. (2018)
System Analysis

\[P(F_R | E) = 1 - \left(1 - P(F_{Seg} | E) \right) \exp \left(- \frac{L}{2\pi} \sqrt{\frac{d^2 \rho_Z(0)}{dx^2}} \times \exp \left(- \frac{\beta_{Seg}^2}{2} \right) \right) \]

Kwak et al. (2016b)
Conclusions

• The Sacramento / San Joaquin Delta is an important piece of infrastructure, serving as the hub of California’s water distribution system.

• Earthquakes pose a particularly onerous hazard to the Delta due to the potential for multiple simultaneous levee breaches and intrusion of saline water.

• Laboratory, field, and centrifuge testing has helped us characterize the seismic response of levees.

• Fragility curves have been developed from field observations of levee damage in Japan.

• A new system reliability analysis procedure was developed to compute the probability of system failure given levee capacity and demand as spatially correlated random fields.
References

